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Introduction

HIS Note deals with obtaining a reduced model of a stable

mechanical system with proportional damping. Such sys-
tems can be conveniently represented in modal coordinates.
The popular scheme modal cost analysis (MCA), given in
Ref. 1, offers a simple means of identifying dominant modes
for retention in the reduced model. In MCA the dominance is
measured via the modal costs. Although this measure leads to
simple computations, it does not exactly reflect “he more ap-
propriate model error, which is the L, norm of the output
error between the full and the reduced models. Normally, the
model error is computed after the reduced model is obtained,
since it is believed that, in general, the model error cannot be
casily computed a priori. The main thrust of this Note is to
point out that the model error can also be calculated a priori,
just as easily as the modal ~osts. Hence, the model error itself
can be used to determine t. ¢ dominant modes. Moreover, the
simplicity of the computations do not presume any special
properties of the system, such as small damping and orthogo-
nal symmetry. The development presented herein can be seen
as a specialization of that in Ref. 2 to mechanical systems.

Problem Formulation

Consider a time-invariant mechanical system, described in
its physical coordinates g, given in the following:

MG(t) + Dg(2) + Xq (1) = Bu)
y(t)y=Cqlt) + €40 0]

where ¢ € R", u € R™, and y € R¥, and u is assumed to be a
Gaussian white noise process with unit intensity. Both the mass
matrix O and the stiffness matrix X are assumed to be sym-
metric and positive definite. The dissipation matrix D is as-
sumed to arise from proportional damping (not necessarily
small) such that the above system is asymptotically stable.
Under these assumptions model (1) can be equivalently ex-
pressed in its modal coordinates as

B4 20w+ win; =blu; i=1,2,...,n (2a)

y= _El (cimi+¢imi) (2b)

where w; and {; are the usual ith natural frequency and the
corresponding damping ratio, respectively.

When # is large, one is faced with the problem of model
reduction to facilitate a subsequent analysis and control de-
sign. Quite often, a reduced model of the system [(2a) and
(2b)] is obtained by retaining some r modes of the total n
modes—a process we call a “‘modal reduction.” To produce
an acceptable reduced model, the question that needs to be
answered is ‘‘which r of the n modes should be retained?”’
Using the notation N, for the integer set {1,2, ...,n}, the
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issue in modal reduction is to identify an r-element ‘‘reduction
set”” Nig C N, such that the following model,

'ﬁi +2§‘iwi7;]i +w12'77i :biTu; iENred (3a)

yo= Y (cimiten) (3b)

ieNred

would be an acceptable reduced model. Defining the error e(¢)
between the full model [(2a) and (2b)] and the reduced model
[(3a) and (3b)] as e(z)=y(f)—y,(¢), an acceptable reduced
model would minimize the model error 6V defined as follows:

60 = lim S E X eT(o)e(o) da} (€Y

0

Dominant Modes by Modal Cost Analysis

For an arbitrary system, not necessarily a mechanical sys-
tem, the model error 6V associated with its reduced model
is normally computed after the reduced model is obtained.
Consequently, obtaining an acceptable reduced model for
such systems becomes an iterative process. To simplify the
reduction process, methods have been proposed to employ
different criteria instead of Eq. (4). One such method is the
component cost analysis (CCA) of Skelton and Yousuff.? The
CCA attempts to use the cost error AV, defined in the follow-
ing, as its criterion for model reduction:

AV =V -9, (5a)
where
V=1m & g g yT0) y(0) do} (5b)
Lo Jo
V, = lim 88 § () y:(0) dU} (50)
f—o 0

Now the reduced models, which are optimal in the sense of
minimizing the model error 6V, are known to satisfy the fol-
lowing orthogonal property*:

t

(e,y,) = }Ln; 8{; goeT(U)yr(U) do} =0 6)

Since the model error 6V can be expressed in terms of the
cost error AV and the inner product (e,y,), as given in the
following,

5V = AV — 2(e, y,) ™

it follows that the cost error is an appropriate criteria to use,
provided the resulting reduced model is known to be near
optimal, if not optimal. Although the computation of AV is
simpler than that of 67, it still requires the availability of the
reduced model. In view of this, the CCA employs the predicted
cost error AV, defined in the following, for its model reduction
decisions:

AV=v-7, ®)

where @, is a prediction of V,. With x; defingg as the (first-
order) state representing the ith component, ¥, is computed
according to

V=Y % (92)
1€Nrq

and where %, the ith component cost, is defined as?

mgquﬂ@ﬂﬂ

T x;(0) do} (%b)
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Since the calculation of the component costs requires only
the full model, the predicted cost error AV can be computed
before a reduced model is obtained.

The application of the CCA to models represented in modal
coordinates, such as in Egs. (2a) and (2b), is called the modal
cost analysis (MCA).! Therefore, modal reduction by MCA
chooses an V4 such that the predicted cost error AV is mini-
mized. Except under special cases, there is no guarantee that
the predicted cost error AV equals the model error 6. It turns
out that for any choice of Nyea the corresponding 6V can be
computed just as easily as AV is computed. Hence, one may
use the more appropriate criterion 6V for choosing N,.4. These
details are developed in the following.

Closed-Form Expression for Model Error
Provided all the modes are observable and controllable,
truncation of any mode would affect the output y. To deter-
mine such an effect, define

sothat y= Y ¢ (10)

iEN,

Vi =cini e

and call ¥, the ith modal output. By defining the truncation
set Ny, =N, — N4, the following expressions result:

e= X Vi (11a)
I €Ny
PeNgy LieN g

where
1{!
¥;; = lim 8{; j ¥l (0)¢(0) dO}; i,JEN, (11¢c)
t— oo 0

In the spirit of CCA, call ¥;; the cost correlation between the
modes 7 and j. Note that ¥;; measures the correlation between
the ith and the jth modal outputs and depends on only the ith
and the jth modal data. The expression for computing ¥;; for
all i, j € N, is given in the next section. Given the modal data,
these cost correlations can be computed for all of the modes,
and the model error 6V can be determined for any r-element
reduction set Nq C N, from the expression (11b). Notice that
the model error can be computed a priori by simple summation
of appropriate ¥;;.

Clearly, there are [n!/ {r!(n —r)!}] number of possible re-
duction sets, of which one will yield the smallest model error.
To facilitate the selection of the best reduction set, construct
an (n, n) cost correlation matrix ¥ whose (7, /) element equals
¥, and define an operation £ : R — R for arbitrary n and
m by

n m

LN(Z2)= Y _El Z

i=1 j=

Then the cost correlation matrix possesses the following prop-
erties for any N eq:

Property 1:
6V = LE(¥iru) (12a)

Property 2:
V = LX(¥) (12b)

Property 3:
V, = EX(¥req) (12¢)

Property 4:

<eyyr> = EZ:("I”retr) (12d)
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Property 5:
0, = LI(Y)) (12€)
where
Vo =[5 1,7 € N (13a)

an (n —r,n —r) submatrix of ¥,
Wiea = [¥;5 1,/ € Niegl (13b)
an (r,r) submatrix of ¥,
Ve = [Wijs [ € NVeea, J € Ninl (13¢)
an (r,n —r) submatrix of ¥, and
¥y = [¥y5 J €Nyl (13d)

an (1, n) matrix (i.e., ith row) for all /.

Notice that the fourth property of the cost correlation ma-
trix allows one to determine a suboptimality index® associated
with the reduced model. This index can be used to determine
whether the reduced model could be improved by further opti-
mizations. It measures how closely the orthogonality condition
(6) is satisfied. The second and third properties provide means
of computing the quadratic cost functions V and V, associated
with the full and the reduced models, respectively. Moreover,
the three errors (namely, the glgdel error 6%, the cost error A,
and the predicted cost error AV) are related through property
(12d) as follows:

AV = 6V + 2TV, (14a)
AV =60 + TE(V,eyr) (14b)

Hence, unless ZE(V,.) =0, modes determined as dominant
based on either the cost error or the predicted cost error may
not yield the smallest model error. Since the expression (11b)
is available for the computation of the model error for any
choice of N4, dominance of modes can be established based
on 6V itself. The disadvantage, however, is in having to com-
pute [(n —r)>— 1] additions [a!/ {ri(n —r)!}] times.

The expression for computing ¥;; for all i,j € N, is given in
the following:

Ay 2%, oIy,
¥ =Xiljl[Cfrcj—gi(gfrcj—cirﬁ)6—2’21791] + ;S fele;
i ij ij
(15a)
where
70,8,
i1 ( i J) J (lsb)

i S
Yo AL il —2Gwidi Ay

— 42 2
A,jﬁwi - w; and

6[1‘ =2§‘,-w[+2§}-wj (ISC)

Proof: Defining the ith modal states as x/ ={y; #,], it
follows from the definition of the cost correlation ¥;; and the
modal outputs y¥; that

rr

1 .
‘I’,‘j = rlljl;lo & {; OXI? (0) CI-TC/'X/‘(G) dO} =tr { C,-TCJ'XJ‘,' ] (163)

where

)
4

1
X;; = lim SZ— x/(e)x] (o) do} (16b)
oo I3

40

Ci=l¢; ¢l (16¢)



410 J. GUIDANCE, VOL. 16, NO. 2:

Table 1 Model error comparison for example 1 (w2 =2, {=0.075)

Based on modal costs Based on model error

Retained Model Retained Model
r modes error modes error
1 {13} 6.7271e — 03 (1} 6.7271e — 03
2 {1, 3} 3.9368¢ - 03 {1,2} 2.9686¢ — 03
3 {1,3,5} 3.8985¢ - 03 {1,2,3} 1.3641e - 04
4 {1,3,4,5} 3.7986e — 03 {1,2,3,43} 5.330le - 05

Table 2 Model error comparison for example 2 {(w2=1, {=0.005)

Based on modal costs Based on model error

Retained Model Retained Model
r modes error modes error
1 {1} 5.0131e - 01 11} 5.0131e¢ - 01
2 {1, 3} 4.5809¢ — 01 {1,2} 4.5479¢ — 02
3 {1, 3, 4} 4.5663e — 01 {1,2,3} 2.2557e¢ — 03
4 {1,3,4,5} 4.5583e — 01 {1,2,3,4} 7.9952¢ — 04

The steady-state correlation matrix between the ith and the jth
modal states is given by

i1 12
X, = [X"Zfl X"zfz] (17a)
X X
where
A
XinZ - _ X%l — 6_/ Xiljl
i
(17b)
X2 = blb _ Ay X2
1} 6,] 6[/ 1]

with X! as defined in Eq. (15b). Substitution of the Egs. (17a)
and (17b) into Eq. (16a) completes the proof.

Expressions similar to Egs. (17a) and (17b) can be found
in several references (e.g., Ref. 6). Expression (15a) is valid for
all / and j, regardless of whether the frequencies are repeated
or whether the damping is small. Of course, the expression
simplifies under special cases, as shown in the following:

Case 1:

bTh,
If W; = Wj, then v, = e

. ——{C»TC“FW-ZC-TC-
T 2 g (O]

(18a)
Case 2:
If w #w, andboth §,5—0
bTb;
then ¥;——-—— {c¢/c;—c/c;) (18b)
ij
Case 3:
If w;=w;, andboth ¢, §—0
b,-Tbj T 2.7,
then ¥ T {eici+wicicil (18¢)

Note by the special case 2 that, for a lightly damped system
(such as a flexible space structure) with distinct frequencies
and with either 1) 575, =0 for all i and j or 2) ¢/¢; =0 for all
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i and j, one obtains ¥;; —0 for all j #i, and for all i. There-
fore, it follows from Egs. (8), (9a), (11b), (12b), and (12e) that
@,‘ =‘I/;,', OV = E ‘I/ii: and &V = ﬁ

Pi€Nyy

Hence, for systems satisfying these assumptions, reduced
models obtained by MCA, which are guaranteed to minimize
the predicted cost error AV, also minimize the model error V.

Examples

Two examples are provided to show that reduced models
generated as suggested in this Note will be at least as good as,
if not better than, those produced by MCA. In both the exam-
ples we begin with five modes and produce reduced models of
different orders. The reduced models are evaluated in terms of
their model errors, and the results are tabulated in Table 1.
The two examples differ only in the frequency of the second
mode and in the damping ratios (the damping ratios are as-
sumed to be equal for all of the modes): In example 1, w, =2
and ¢=0.075; in example 2, w, =1 and {=0.005. The parame-
ters common to both the examples are w; =1, w3=9, w,=16,
ws=25, b;=0.9877, b= —0.309, b;=—0.891, b,=0.5878,
bs=0.707, ¢,=0.9877, ¢;=0.309, c;= —0.891, c,= —0.5878,
¢5=0.707, and ¢; =0 for all ;.

Conclusions

The quality of a reduced model is often computed through
the model error. In general, this can be computed only after
the reduced model is obtained. This Note points out that, for
mechanical systems represented in modal coordinates, the
model error can be computed a priori for any choice of re-
tained modes. In fact, the computations involved are just as
simple as those needed for the general modal cost analysis. It
is shown that, when the system is known to satisfy certain
assumptions, the reduced models produced by modal cost
analysis, which minimize the predicted cost error, actually
minimize the model error. However, this is generally not the
case. To facilitate the selection of the set of retained modes
that would actually minimize the model error, a cost correla-
tion matrix has been presented. The model error is computed
by simple summation of the appropriate elements of this ma-
trix. Although the cost correlation matrix is constructed from
the given modal data only once, the computational effort may
still become formidable, depending on the number of the orig-
inal modes and the number of the retained modes.
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